If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+19t+50=0
a = -4.9; b = 19; c = +50;
Δ = b2-4ac
Δ = 192-4·(-4.9)·50
Δ = 1341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1341}=\sqrt{9*149}=\sqrt{9}*\sqrt{149}=3\sqrt{149}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-3\sqrt{149}}{2*-4.9}=\frac{-19-3\sqrt{149}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+3\sqrt{149}}{2*-4.9}=\frac{-19+3\sqrt{149}}{-9.8} $
| -4.9t^2+19t+70=0 | | 9-5y=6 | | 2x+36+52=180 | | b+8=12.8 | | x+26=5x-34 | | 2x(-2+x)=50 | | 7x-8+52=180 | | 3y-2=1/2(10y+8) | | -3m+2=-3(m-8) | | -9=6n+3 | | -3m+2=-3(m-8 | | -3y-13=7y+20 | | 3/4(c-36)=12 | | x+93=360 | | -5a-4=-24 | | 7,8-5,6x=4,3x-2,1 | | 2b/5+3b/4=4 | | 2x+163=2x+125+38 | | 9x+4x-8=34+1 | | 3=x−1 | | 2d-4d=-25 | | (3n+3=60 | | 35/x+9=7/6 | | 3x÷3=9 | | −0.1x^2−x+37=0.1x^2+2x+17 | | .10x+.05x+25=63.65 | | 3-5x=10-12x=360 | | -18-4.5x=8-3x | | 3x-13-2x+19=-4 | | w/22=14/22 | | -3x-17=16 | | 4(8-6a)-10=-50 |